Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Energy and Buildings ; 289, 2023.
Article in English | Scopus | ID: covidwho-2291214

ABSTRACT

To achieve carbon emission reduction target (CERT) by 2030 and carbon-neutrality in 2050, it is important to actively reduce the emission gap in the private building sector. However, the ongoing COVID-19 pandemic and the Russian-Ukraine war are threatening the green remodeling policy (GRP) worldwide. Therefore, this study analyzed energy consumption savings, GHG emission reduction, and net present value when applying green remodeling to a private building to predict whether or not the current GRP could achieve 2030 CERT and 2050 carbon-neutrality. The main findings are as follows. First, yearly electricity and gas consumption of 84.97 m2 type households can be reduced by 6.19% and 15.58% through green remodeling. Second, based on the energy saving, yearly GHG emission can be reduced about 0.34tCO2eq. Third, the economic feasibility of green remodeling cannot be achieved via the current policy, and NPV17 decreases up to USD-51,485 depending on the credit loan interest rate and the green remodeling interest subsidy program. In other words, it is difficult to reach 2030 CERT and 2050 carbon-neutrality via the current policy. Therefore, the South Korean government is required to reorganize financial policies, establish active systems, increase public awareness of the policy, and improve energy efficiency technology. © 2023 Elsevier B.V.

2.
Offshore Technology Conference, OTC 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2270397

ABSTRACT

As the industry recovers from the recent downturn in petroleum commodity prices and the economic impacts from coronavirus (COVID-19), governing authorities in most countries are imposing methodological measures to promote the reduction of carbon footprint. This affects every industry including the petroleum sector. Therefore, most investors and stakeholders have increased their focus on Environmental, Social, and Corporate Governance (ESG) policies. During the well construction phase, a transition from a hydraulic to an electric tong is achieved, resulting in carbon footprint reduction. Achieving carbon neutrality or carbon emission reduction while producing hydrocarbons is one of the topmost key performance indicators (KPIs) in the industry. With the implementation of digital technologies in the tubular and casing connection make-up process, a hydraulic tong is substituted with an electric tong of an equivalent specification. The energy consumption for both systems are calculated and compared. Other important KPIs on tracking operational cost are also assessed and the results are then compared to determine the benefits of implementing the upgraded digitalized tong solution. The electric tong digitalized solution, commercially available in the petroleum industry, is a key enabler for carbon emission reduction while running tubulars in/out of the wellbore. This solution is one of the milestones that serve as foundation to advocate carbon reduction. Eventually, this will lead to establishing carbon neutrality during hydrocarbon extraction and production. The results concluded that a digitalized solution eventually reduced personnel on board working in the "red zone," which eventually leads to carbon emission reductions caused by a decrease in fuel consumption. The decrease of 43% in CO2 emission is observed while performing tubular connection process. Moreover, an overall comparison between a legacy system with the digitalized electric system displayed more than 59% reduction in CO2 during the tubular running services. In addition to carbon reduction, this electric power and control solution allows for more precise torque control, leading to enhanced system integrity and increased reliability achieved by cleaner energy. With this digital solution, not only is the safety and well-being of rig personnel enhanced to avoid any recordable incidents, the reduction of carbon emission is also achieved, aligning to the objectives of current ESG regulatory authorities. This paper will provide comprehensive details on the novelty of this technology and solution offered to the industry. © 2022, Offshore Technology Conference. All rights reserved.

3.
IEEE Transactions on Sustainable Energy ; 2022.
Article in English | Scopus | ID: covidwho-1731045

ABSTRACT

The COVID-19 has slowed down the global economic growth. Meanwhile, it also significantly cuts the global carbon emission, which provides a golden opportunity for the whole world to combat the climate change together. While the former policies (e.g., the CAFE standards, renewable portfolio standards, etc.) have reduced certain level of fossil fuel consumption, the most effective measures (such as carbon tax, cap-and-trade programs) are still far from ready for global implementation. This paper investigates an alternative way to achieve a more carbon efficient power grid using the uplift payment scheme. Specifically, we propose an effective algorithm to guarantee the carbon efficiency with the minimal uplift payments. We also submit that this scheme provides more flexibility to realize carbon reduction than carbon tax, which is exemplified by thorough numerical studies. Furthermore, we show that the stability of the power grid can be ensured under our uplift payment scheme, both from theoretical analysis and numerical studies. The results strengthen our belief that our uplift payment scheme is practicable for electricity market. IEEE

SELECTION OF CITATIONS
SEARCH DETAIL